Asymmetric dimethyl L-arginine (ADMA) is a critical regulator of myocardial reperfusion injury.

نویسندگان

  • Markus C Stühlinger
  • Elisabetta Conci
  • Bernhard J Haubner
  • Eva-Maria Stocker
  • Julia Schwaighofer
  • John P Cooke
  • Philip S Tsao
  • Otmar Pachinger
  • Bernhard Metzler
چکیده

OBJECTIVE Endothelial dysfunction by the loss of nitric oxide (NO) is a critical event during reperfusion of ischemic myocardium. Reduced NO availability signals important pathophysiological changes leading to myocardial reperfusion injury. We have recently shown that NO biosynthesis can be disturbed by the endogenous NO synthase (NOS) inhibitor ADMA and that these changes are mediated by an impairment of its metabolism by dimethylarginine dimethylaminohydrolase (DDAH). We therefore analyzed the role of ADMA and its metabolism in the setting of myocardial ischemia and reperfusion. METHODS C57-bl6 mice underwent myocardial ischemia for exactly 30 min followed by 2, 4, 8, 12, 24, and 72 h of reperfusion achieved by occlusion and re-opening of the left coronary artery. The reperfused left ventricle was subsequently homogenized for measurements of determinants of the NO synthase pathway. Furthermore, the effects and its mechanisms of ADMA on reperfusion injury were analyzed in a genetic mouse model. RESULTS A significant accumulation of ADMA was found in myocardial tissue when mice were subjected to 30 min of ischemia followed by reperfusion in our in vivo model. The maximum increase of tissue ADMA at 4 h of reperfusion coincided with reductions of NO tissue concentrations and DDAH activity; protein expression of NOS isoforms, however, was not changed. Furthermore, DDAH overexpression in a genetic mouse model as well as treatment with oral L-arginine markedly reduced reperfusion injury by 40-50% at 4 h of reperfusion. The effects of ADMA on reperfusion injury were shown to be mediated by reduced eNOS activity and phosphorylation, expression of adhesion molecules, and leukocyte activity. CONCLUSION Accumulation of tissue ADMA by impairment of DDAH was found to be a significant determinant of reperfusion injury. Our results indicate that ADMA could be a potential new target for the treatment of myocardial ischemia/reperfusion injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Exogenous Asymmetric Dimethylarginine (ADMA) in Pathogenesis of Ischemia-Reperfusion-Induced Gastric Lesions: Interaction with Protective Nitric Oxide (NO) and Calcitonin Gene-Related Peptide (CGRP)

Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide (NO) synthesis inhibitor and pro-inflammatory factor. We investigated the role of ADMA in rat gastric mucosa compromised through 30 min of gastric ischemia (I) and 3 h of reperfusion (R). These I/R animals were pretreated with ADMA with or without the combination of L-arginine, calcitonin gene-related peptide (CGRP) or a small dos...

متن کامل

Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury

Ischemia/reperfusion injury is the leading cause of acute tubular necrosis. Nitric oxide has a protective role against ischemia/reperfusion injury; however, the role of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, in ischemia/reperfusion injury remains unclear. ADMA is produced by protein arginine methyltransferase (PRMT) and is mainly degraded by dimeth...

متن کامل

Effect of simvastatin on nitric oxide synthases (eNOS, iNOS) and arginine and its derivatives (ADMA, SDMA) in ischemia/reperfusion injury in rat liver.

Hydroxymethylglutaryl-CoA reductase inhibitors play a role in nitric oxide synthesis. In this study, the impact of simvastatin (SV) on the levels of nitric oxide synthases, and arginine (Arg) and its derivatives was evaluated in rat liver under ischemia-reperfusion (I/R) conditions. Rats received SV (25 mg/kg) (groups S and S-IR) or saline solution (groups C and C-IR) intragastrically for 21 da...

متن کامل

Effect of Certain Pharmacotherapies on Plasma Asymmetric Dimethyl Arginine (ADMA)

Asymmetric dimethyl arginine [ADMA] is a nitric oxide synthase inhibitor and reduces nitric oxide [NO] generation. It is considered an important cardiovascular risk marker. It is raised in various clinical conditions like hypertension, ischemic heart disease, cardiac failure, diabetes mellitus, obesity and toxaemia of pregnancy. Certain drugs used to treat these conditions have additional ADMA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 2007